AWS Deep Learning AMI (DLAMI) Installation
On this Page
AWS Deep Learning AMI (DLAMI) Installation¶
When using the AWS DLAMI, the environment is already pre-installed. The image contains the SynapseAI software stack and TensorFlow/PyTorch framework. Loading additional SW or Container images is optional.
Objective |
Steps |
|||
---|---|---|---|---|
Use TensorFlow or PyTorch on DLAMI |
|
|||
Run Using Containers on DLAMI (Optional) |
Note
Before installing the below packages and dockers, make sure to review the currently supported versions and Operating Systems listed in the Support Matrix.
Set up Python for Models¶
Using your own models requires setting python 3.8 as the default python version. If python 3.8 is not the default version, replace any call to the python command on your model with $PYTHON and define the environment variable as below:
export PYTHON=/usr/bin/python3.8
Running models from Habana Model-References, requires the PYTHON environment variable to match the supported python release:
export PYTHON=/usr/bin/<python version>
Note
Python 3.8 is the supported python release for all Operating Systems except for Ubuntu22.04. See the versions listed in the Support Matrix.
Run Using Containers¶
To run using containers, make sure to Set up Container Usage.
Set up Container Usage¶
To run containers, make sure to install and set up container runtime as detailed in the below sections.
Install Container Runtime¶
The container runtime is a modified runc that installs the container runtime library. This provides you the ability to select the devices to be mounted in the container. You only need to specify the indices of the devices for the container, and the container runtime will handle the rest. The container runtime can support both docker and Kubernetes.
Package Retrieval:
Download and install the public key:
curl -X GET https://vault.habana.ai/artifactory/api/gpg/key/public | sudo apt-key add --
Get the name of the operating system:
lsb_release -c | awk '{print $2}'
Create an apt source file /etc/apt/sources.list.d/artifactory.list with deb https://vault.habana.ai/artifactory/debian <OS name from previous step> main content.
Update Debian cache:
sudo dpkg --configure -a
sudo apt-get update
Install habanalabs-container-runtime:
Install the habanalabs-container-runtime
package:
sudo apt install -y habanalabs-container-runtime
Package Retrieval:
Download and install the public key:
curl -X GET https://vault.habana.ai/artifactory/api/gpg/key/public | sudo apt-key add --
Get the name of the operating system:
lsb_release -c | awk '{print $2}'
Create an apt source file /etc/apt/sources.list.d/artifactory.list with deb https://vault.habana.ai/artifactory/debian <OS name from previous step> main content.
Update Debian cache:
sudo dpkg --configure -a
sudo apt-get update
Install habanalabs-container-runtime:
Install the habanalabs-container-runtime
package:
sudo apt install -y habanalabs-container-runtime
Package Retrieval:
Create /etc/yum.repos.d/Habana-Vault.repo with the following content:
[vault]
name=Habana Vault
baseurl=https://vault.habana.ai/artifactory/AmazonLinux2
enabled=1
gpgcheck=0
gpgkey=https://vault.habana.ai/artifactory/AmazonLinux2/repodata/repomod.xml.key
repo_gpgcheck=0
Update YUM cache by running the following command:
sudo yum makecache
Verify correct binding by running the following command:
yum search habana
This will search for and list all packages with the word Habana.
Install habanalabs-container-runtime:
Install the habanalabs-container-runtime
package:
sudo yum install -y habanalabs-container-runtime
Package Retrieval:
Create /etc/yum.repos.d/Habana-Vault.repo with the following content:
[vault]
name=Habana Vault
baseurl=https://vault.habana.ai/artifactory/rhel/8/8.6
enabled=1
repo_gpgcheck=0
Update YUM cache by running the following command:
sudo yum makecache
Verify correct binding by running the following command:
yum search habana
This will search for and list all packages with the word Habana.
Reinstall libarchive package by following command:
sudo dnf install -y libarchive*
Install habanalabs-container-runtime:
Install the habanalabs-container-runtime
package:
sudo yum install -y habanalabs-container-runtime
Set up Container Runtime¶
To register the habana
runtime, use the method below that is best
suited to your environment. You might need to merge the new argument
with your existing configuration.
Note
As of Kubernetes 1.20 support for docker has been deprecated.
Register Habana runtime by adding the following to /etc/docker/daemon.json:
sudo tee /etc/docker/daemon.json <<EOF { "runtimes": { "habana": { "path": "/usr/bin/habana-container-runtime", "runtimeArgs": [] } } } EOF
(Optional) For Kubernetes, reconfigure the default runtime by adding the following to
/etc/docker/daemon.json
:"default-runtime": "habana"
It will look similar to this:
{ "default-runtime": "habana", "runtimes": { "habana": { "path": "/usr/bin/habana-container-runtime", "runtimeArgs": [] } } }
Restart Docker:
sudo systemctl restart docker
If a host machine has eight Habana devices, you can mount all using the environment variable HABANA_VISIBLE_DEVICES=all
. The below shows the usage example:
docker run --rm --runtime=habana -e HABANA_VISIBLE_DEVICES=all {docker image} /bin/bash -c "ls /dev/hl*"
/dev/hl0
/dev/hl1
/dev/hl2
/dev/hl3
/dev/hl4
/dev/hl5
/dev/hl6
/dev/hl7
/dev/hl_controlD0
/dev/hl_controlD1
/dev/hl_controlD2
/dev/hl_controlD3
/dev/hl_controlD4
/dev/hl_controlD5
/dev/hl_controlD6
/dev/hl_controlD7
This variable controls which Habana devices will be made accessible inside the container. Possible values:
0,1,2 … - A comma-separated list of index(es).
all - All Habana devices will be accessible. This is the default value.
Register Habana runtime:
sudo tee /etc/containerd/config.toml <<EOF disabled_plugins = [] version = 2 [plugins] [plugins."io.containerd.grpc.v1.cri"] [plugins."io.containerd.grpc.v1.cri".containerd] default_runtime_name = "habana" [plugins."io.containerd.grpc.v1.cri".containerd.runtimes] [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.habana] runtime_type = "io.containerd.runc.v2" [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.habana.options] BinaryName = "/usr/bin/habana-container-runtime" [plugins."io.containerd.runtime.v1.linux"] runtime = "habana-container-runtime" EOF
Restart containerd:
bash sudo systemctl restart containerd
Pull Prebuilt Containers¶
Prebuilt containers are provided in:
Habana Vault
Amazon ECR Public Library
AWS Deep Learning Containers (DLC)
Pull and Launch Docker Image - Habana Vault¶
Note
Before running docker, make sure to map the dataset as detailed in Map Dataset to Docker.
To pull and run the Habana Docker images use the below code examples. Update the parameters listed in the following table to run the desired configuration.
Parameter |
Description |
Values |
---|---|---|
$OS |
Operating System of Image |
[ubuntu20.04, ubuntu22.04, amzn2, rhel8.6] |
$TF_VERSION |
Desired TensorFlow Version |
[2.12.0] |
$PT_VERSION |
PyTorch Version |
[2.0.1] |
Note
Include –ipc=host in the docker run command for PyTorch docker images. This is required for distributed training using the Habana Collective Communication Library (HCCL); allowing re-use of host shared memory for best performance.
docker pull vault.habana.ai/gaudi-docker/1.10.0/{$OS}/habanalabs/tensorflow-installer-tf-cpu-$2.12.0:latest
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host vault.habana.ai/gaudi-docker/1.10.0/{$OS}/habanalabs/tensorflow-installer-tf-cpu-${TF_VERSION}:latest
docker pull vault.habana.ai/gaudi-docker/1.10.0/{$OS}/habanalabs/pytorch-installer-2.0.1:latest
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.10.0/{$OS}/habanalabs/pytorch-installer-2.0.1:latest
Amazon ECR Public Gallery¶
To pull and run docker images from Amazon ECR Public Library, make sure to follow the steps detailed in Pulling a public image.
AWS Deep Learning Containers¶
To set up and use AWS Deep Learning Containers, follow the instructions detailed in AWS Available Deep Learning Containers Images.
Build Docker Images from Habana Dockerfiles¶
Download Docker files and build script from the Setup and Install Repo to a local directory.
Run the build script to generate a Docker image:
./docker_build.sh mode [tensorflow,pytorch] os [ubuntu20.04,ubuntu22.04,amzn2,rhel8.6] tf_version
For example:
./docker_build.sh tensorflow ubuntu20.04 2.12.0
Launch Docker Image that was Built¶
Note
Before running docker, make sure to map the dataset as detailed in Map Dataset to Docker.
Launch the docker image using the below code examples. Update the parameters listed in the following table to run the desired configuration.
Parameter |
Description |
Values |
---|---|---|
$OS |
Operating System of Image |
[ubuntu20.04, ubuntu22.04 amzn2, rhel8.6] |
$TF_VERSION |
Desired TensorFlow Version |
[2.12.0] |
$PT_VERSION |
Desired PyTorch Version |
[2.0.1] |
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host vault.habana.ai/gaudi-docker/1.10.0/${OS}/habanalabs/tensorflow-installer-tf-cpu-$2.12.0:latest
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.10.0/${OS}/habanalabs/pytorch-installer-2.0.1:latest
Map Dataset to Docker¶
Make sure to download the dataset prior to running docker and mount the
location of your dataset to the docker by adding the below flag. For
example, host dataset location /opt/datasets/imagenet
will mount to
/datasets/imagenet
inside the docker:
-v /opt/datasets/imagenet:/datasets/imagenet
Note
OPTIONAL: Add the following flag to mount a local host share folder to the docker in order to be able to transfer files out of docker:
-v $HOME/shared:/root/shared