habana_frameworks.mediapipe.fn.Reshape
habana_frameworks.mediapipe.fn.Reshape¶
- Class:
habana_frameworks.mediapipe.fn.Reshape(**kwargs)
- Define graph call:
__call__(input)
- Parameter:
input - Input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, UINT8, BFLOAT16, FLOAT16.
Description:
This operation returns a new tensor that has the same values as input tensor in the same order, except with a new shape given by size
and tensorDim
arguments.
- Supported backend:
HPU
Keyword Arguments
kwargs |
Description |
---|---|
size |
Shape of output tensor, max length =
|
tensorDim |
Dimension of reshaped output tensor.
|
layout |
Output tensor layout.
|
dtype |
Output data type.
|
Note
The number of elements in the input and output tensor must be equal.
Example: Reshape Operator
The following code snippet shows usage of Reshape operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
# Create media pipeline derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, dir, queue_depth, batch_size, channels, img_h, img_w):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
self.__class__.__name__)
self.input = fn.ReadImageDatasetFromDir(shuffle=False,
dir=dir,
format="jpg")
# WHCN
self.decode = fn.ImageDecoder(device="hpu",
output_format=it.RGB_P,
resize=[img_w, img_h])
# WH(C*N)
self.reshape = fn.Reshape(size=[img_w, img_h, channels*batch_size],
tensorDim=3,
layout='')
def definegraph(self):
images, labels = self.input()
images = self.decode(images)
images = self.reshape(images)
return images, labels
def main():
batch_size = 6
img_width = 200
img_height = 200
img_channel = 3
img_dir = "/path/to/images"
queue_depth = 2
# Create media pipeline object
pipe = myMediaPipe('hpu', img_dir, queue_depth, batch_size,
img_channel, img_height, img_width)
# Build media pipeline
pipe.build()
# Initialize media pipeline iterator
pipe.iter_init()
# Run media pipeline
images, labels = pipe.run()
# Copy data to host from device as numpy array
images = images.as_cpu().as_nparray()
labels = labels.as_cpu().as_nparray()
# Display shape
print('images shape', images.shape)
if __name__ == "__main__":
main()
The following is the Reshaped output tensor shape: