habana_frameworks.mediapipe.fn.MediaConst
habana_frameworks.mediapipe.fn.MediaConst¶
- Class:
habana_frameworks.mediapipe.fn.MediaConst(**kwargs)
- Define graph call:
__call__()
- Parameter:
None
Description:
This operator generates constant data as per given shape and data type on every iteration.
- Supported backend:
CPU
Keyword Arguments
kwargs |
Description |
---|---|
data |
Data to be used as constant.
|
layout |
Layout of data.
|
shape |
Shape of the output tensor.
|
Note
Produces one output.
Example: MediaConst Operator
The following code snippet shows usage of MediaConst operator. In this example the indices which are input to GatherND
operation are generated
using MediaConst operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
import matplotlib.pyplot as plt
import numpy as np
# Create media pipeline derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, dir, queue_depth, batch_size, img_h, img_w):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
self.__class__.__name__)
self.input = fn.ReadImageDatasetFromDir(shuffle=False,
dir=dir,
format="jpg")
# WHCN
self.decode = fn.ImageDecoder(device="hpu",
output_format=it.RGB_P,
resize=[img_w, img_h])
indices_data = np.array([[5], [4], [3], [2], [1], [0]], dtype='int32')
self.indices = fn.MediaConst(data=indices_data,
shape=[1, batch_size],
dtype=dt.INT32)
self.gather_nd = fn.GatherND(dtype=dt.UINT8)
# WHCN -> CWHN
self.transpose = fn.Transpose(permutation=[2, 0, 1, 3],
tensorDim=4,
dtype=dt.UINT8)
def definegraph(self):
images, labels = self.input()
images = self.decode(images)
indices = self.indices()
images = self.gather_nd(images, indices)
images = self.transpose(images)
return images, labels
def display_images(images, batch_size, cols):
rows = (batch_size + 1) // cols
plt.figure(figsize=(10, 10))
for i in range(batch_size):
ax = plt.subplot(rows, cols, i + 1)
plt.imshow(images[i])
plt.axis("off")
plt.show()
def main():
batch_size = 6
img_width = 200
img_height = 200
img_dir = "/path/to/images"
queue_depth = 2
columns = 3
# Create media pipeline object
pipe = myMediaPipe('hpu', img_dir, queue_depth, batch_size,
img_height, img_width)
# Build media pipeline
pipe.build()
# Initialize media pipeline iterator
pipe.iter_init()
# Run media pipeline
const_data, labels = pipe.run()
# Copy data to host from device as numpy array
images = const_data.as_cpu().as_nparray()
labels = labels.as_cpu().as_nparray()
# Display images
display_images(images, batch_size, columns)
if __name__ == "__main__":
main()
MediaConst() Generated Images from GatherND 1
- 1
Licensed under a CC BY SA 4.0 license. The images used here are taken from https://data.caltech.edu/records/mzrjq-6wc02.