habana_frameworks.mediapipe.fn.Mult
habana_frameworks.mediapipe.fn.Mult¶
- Class:
habana_frameworks.mediapipe.fn.Mult(**kwargs)
- Define graph call:
__call__(input1, input2)
- Parameter:
input1 - First input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT16, INT32, FLOAT16, BFLOAT16, FLOAT32.
input2 - Second input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT16, INT32, FLOAT16, BFLOAT16, FLOAT32.
Description:
Resultant tensor formed from the multiplication of the two operands element-wise. This operator performs element-wise multiplication and supports Broadcasting
.
Computes output as: output = (input1 * input2), element-wise.
- Supported backend:
HPU, CPU
Keyword Arguments
kwargs |
Description |
---|---|
dtype |
Output data type.
|
Note
All input/output tensors must be of the same data type and must have the same dimensionality except in broadcast support where dimensionality can be different.
This operator is agnostic to the data layout.
Example: Mult Operator
The following code snippet shows usage of Mult operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import os
import numpy as np
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
super(myMediaPipe, self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.inp1 = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_x_*.npy",
dense=True,
dtype=dt.FLOAT32,
device="cpu")
self.inp2 = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_y_*.npy",
dense=True,
dtype=dt.FLOAT32,
device="cpu")
self.mul = fn.Mult(dtype=dt.FLOAT32,
device=op_device)
def definegraph(self):
inp1 = self.inp1()
inp2 = self.inp2()
out = self.mul(inp1, inp2)
return out, inp1, inp2
def run(device, op_device):
batch_size = 2
queue_depth = 2
num_threads = 1
base_dir = os.environ['DATASET_DIR']
dir = base_dir+"/npy_data/fp32/"
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
out, inp1, inp2 = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
out = as_cpu(out).as_nparray()
inp1 = as_cpu(inp1).as_nparray()
inp2 = as_cpu(inp2).as_nparray()
print("\ninp1 tensor shape:", inp1.shape)
print("inp1 tensor dtype:", inp1.dtype)
print("inp1 tensor data:\n", inp1)
print("\ninp2 tensor shape:", inp2.shape)
print("inp2 tensor dtype:", inp2.dtype)
print("inp2 tensor data:\n", inp2)
print("\nout tensor shape:", out.shape)
print("out tensor dtype:", out.dtype)
print("out tensor data:\n", out)
del pipe
return inp1, inp2, out
def compare_ref(inp1, inp2, out):
ref = inp1 * inp2
if np.array_equal(ref, out) == False:
raise ValueError(f"Mismatch w.r.t ref for device")
if __name__ == "__main__":
dev_opdev = {'cpu': ['cpu'],
'mixed': ['cpu', 'hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
inp1, inp2, out = run(dev, op_dev)
compare_ref(inp1, inp2, out)
The following is the output of Mult operator:
inp1 tensor shape: (2, 3, 2, 3) inp1 tensor dtype: float32 inp1 tensor data: [[[[182. 227. 113.] [175. 128. 253.]] [[ 58. 140. 136.] [ 86. 80. 111.]] [[175. 196. 178.] [ 20. 163. 108.]]] [[[186. 254. 96.] [180. 64. 132.]] [[149. 50. 117.] [213. 6. 111.]] [[ 77. 11. 160.] [129. 102. 154.]]]] inp2 tensor shape: (2, 3, 2, 3) inp2 tensor dtype: float32 inp2 tensor data: [[[[ 56. 168. 82.] [157. 42. 155.]] [[ 62. 235. 238.] [ 94. 125. 192.]] [[125. 162. 1.] [206. 77. 123.]]] [[[138. 196. 246.] [137. 203. 7.]] [[217. 194. 11.] [167. 218. 226.]] [[ 68. 160. 254.] [243. 93. 70.]]]] out tensor shape: (2, 3, 2, 3) out tensor dtype: float32 out tensor data: [[[[10192. 38136. 9266.] [27475. 5376. 39215.]] [[ 3596. 32900. 32368.] [ 8084. 10000. 21312.]] [[21875. 31752. 178.] [ 4120. 12551. 13284.]]] [[[25668. 49784. 23616.] [24660. 12992. 924.]] [[32333. 9700. 1287.] [35571. 1308. 25086.]] [[ 5236. 1760. 40640.] [31347. 9486. 10780.]]]]