habana_frameworks.mediapipe.fn.Reshape
habana_frameworks.mediapipe.fn.Reshape¶
- Class:
habana_frameworks.mediapipe.fn.Reshape(**kwargs)
- Define graph call:
__call__(input)
- Parameter:
input - Input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, UINT8, BFLOAT16, FLOAT16.
Description:
This operation returns a new tensor that has the same values as input tensor in the same order, except with a new shape given by size
and tensorDim
arguments.
- Supported backend:
HPU
Keyword Arguments
kwargs |
Description |
---|---|
size |
Shape of output tensor, max length =
|
tensorDim |
Dimension of reshaped output tensor.
|
layout |
Output tensor layout.
|
dtype |
Output data type.
|
Note
The number of elements in the input and output tensor must be equal.
Example: Reshape Operator
The following code snippet shows usage of Reshape operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import numpy as np
import os
import glob
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads,
op_device, dir, pattern, reshape_to):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.inp = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern=pattern,
dense=True,
dtype=dt.FLOAT32,
device="cpu")
self.reshape = fn.Reshape(size=reshape_to,
tensorDim=2,
layout='',
dtype=dt.FLOAT32,
device=op_device)
def definegraph(self):
inp = self.inp()
out = self.reshape(inp)
return out, inp
def run(device, op_device):
batch_size = 2
queue_depth = 2
num_threads = 1
base_dir = os.environ['DATASET_DIR']
dir = base_dir+"/npy_data/fp32/"
pattern = "*x*.npy"
npy_x = sorted(glob.glob(dir + "/{}".format(pattern[0])))
reshape_val = np.load(npy_x[0]).size
reshape_to = [reshape_val, batch_size]
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir, pattern, reshape_to)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
out, inp = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
out = as_cpu(out).as_nparray()
inp = as_cpu(inp).as_nparray()
del pipe
# Display shape
print('input shape', inp.shape)
print('output shape', out.shape)
return inp, out
def compare_ref(inp, out):
reshape_val = inp.size//inp.shape[0]
ref = np.reshape(inp, [inp.shape[0], reshape_val])
if np.array_equal(ref, out) == False:
raise ValueError(f"Mismatch w.r.t ref for device")
if __name__ == "__main__":
dev_opdev = {'mixed': ['hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
inp, out = run(dev, op_dev)
compare_ref(inp, out)
The following is the Reshaped output tensor shape:
input shape (2, 3, 2, 3)
output shape (2, 18)