habana_frameworks.mediapipe.fn.GatherND
habana_frameworks.mediapipe.fn.GatherND¶
- Class:
habana_frameworks.mediapipe.fn.GatherND(**kwargs)
- Define graph call:
__call__(input, indices)
- Parameter:
input - Input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: UINT8, UINT16.
indices - Tensor containing indices for gather. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT32.
Description:
This operator gathers slices of input tensor into an output tensor of a specific rank. Let the input tensor be of rank r >= 1,
and index tensor be of rank q >= 1, then the output tensor will be of rank q + r - FCD of the indices - 1, where FCD is the Fastest Changing Dimension. This operator is
ONNX 1.6 GatherND
compliant which is functionally equivalent as TF 2.4.1 gather_nd
.
- Supported backend:
HPU
Keyword Arguments
kwargs |
Description |
---|---|
dtype |
Output data type.
|
Note
The FCD size of the index tensor must be less than the rank of the input tensor.
According to ONNX: output shape = ‘Index_feature_map.shape[0:q-1] ++ Input_feature_map.shape[q:r-1], where ++ denotes the concatenation of shapes.’ Since FCD first notation is followed in TPC, this shape is reversed.
Example: GatherND Operator
The following code snippet shows usage of GatherND operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
import matplotlib.pyplot as plt
import numpy as np
import os
g_display_timeout = os.getenv("DISPLAY_TIMEOUT") or 5
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir, img_h, img_w):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.input = fn.ReadImageDatasetFromDir(shuffle=False,
dir=dir,
format="jpg",
device="cpu")
# WHCN
self.decode = fn.ImageDecoder(device="hpu",
output_format=it.RGB_P,
resize=[img_w, img_h])
indices_data = np.array([[5], [4], [3], [2], [1], [0]], dtype='int32')
self.indices = fn.MediaConst(data=indices_data,
shape=[1, batch_size],
dtype=dt.INT32,
batch_broadcast=False,
device="cpu")
self.gather_nd = fn.GatherND(dtype=dt.UINT8,
device=op_device)
# WHCN -> CWHN
self.transpose = fn.Transpose(permutation=[2, 0, 1, 3],
tensorDim=4,
dtype=dt.UINT8,
device=op_device)
def definegraph(self):
images, labels = self.input()
images = self.decode(images)
indices = self.indices()
images = self.gather_nd(images, indices)
images = self.transpose(images)
return images, labels
def display_images(images, batch_size, cols):
rows = (batch_size + 1) // cols
plt.figure(figsize=(10, 10))
for i in range(batch_size):
ax = plt.subplot(rows, cols, i + 1)
plt.imshow(images[i])
plt.axis("off")
plt.show(block=False)
plt.pause(g_display_timeout)
plt.close()
def run(device, op_device):
batch_size = 6
queue_depth = 2
num_threads = 1
img_width = 200
img_height = 200
base_dir = os.environ['DATASET_DIR']
dir = base_dir + "/img_data/"
columns = 3
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir,
img_height, img_width)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
images, labels = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
images = as_cpu(images).as_nparray()
labels = as_cpu(labels).as_nparray()
del pipe
# Display images
display_images(images, batch_size, columns)
if __name__ == "__main__":
dev_opdev = {'mixed': ['hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
run(dev, op_dev)
Images Gathered in Reverse Order from a Batch 1
- 1
Licensed under a CC BY SA 4.0 license. The images used here are taken from https://data.caltech.edu/records/mzrjq-6wc02.