habana_frameworks.mediapipe.fn.BitwiseOr
habana_frameworks.mediapipe.fn.BitwiseOr¶
- Class:
habana_frameworks.mediapipe.fn.BitwiseOr(**kwargs)
- Define graph call:
__call__(input1, input2)
- Parameter:
input1 - First input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, INT16, INT32, UINT8, UINT16, UINT32.
input2 - Second input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, INT16, INT32, UINT8, UINT16, UINT32.
Description:
Computes the output by doing bitwise OR
operation on input tensors. Output is calculated as (B = |(A)).
- Supported backend:
HPU
Keyword Arguments
kwargs |
Description |
---|---|
dtype |
Output data type.
|
Note
All input/output tensors must be of the same data type and must have the same dimensionality.
This operator is agnostic to the data layout.
Example: BitwiseOr Operator
The following code snippet shows usage of BitwiseOr operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import os
import numpy as np
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.inp1 = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_x_*.npy",
dense=True,
dtype=dt.UINT8,
device="cpu")
self.inp2 = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_y_*.npy",
dense=True,
dtype=dt.UINT8,
device="cpu")
self.bitwise_or = fn.BitwiseOr(dtype=dt.UINT8,
device=op_device)
def definegraph(self):
inp1 = self.inp1()
inp2 = self.inp2()
out = self.bitwise_or(inp1, inp2)
return out, inp1, inp2
def run(device, op_device):
batch_size = 2
queue_depth = 2
num_threads = 1
base_dir = os.environ['DATASET_DIR']
dir = base_dir+"/npy_data/u8/"
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
out, inp1, inp2 = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
out = as_cpu(out).as_nparray()
inp1 = as_cpu(inp1).as_nparray()
inp2 = as_cpu(inp2).as_nparray()
del pipe
print("\ninp1 tensor shape:", inp1.shape)
print("inp1 tensor dtype:", inp1.dtype)
print("inp1 tensor data:\n", inp1)
print("\ninp2 tensor shape:", inp2.shape)
print("inp2 tensor dtype:", inp2.dtype)
print("inp2 tensor data:\n", inp2)
print("\nout tensor shape:", out.shape)
print("out tensor dtype:", out.dtype)
print("out tensor data:\n", out)
return inp1, inp2, out
def compare_ref(inp1, inp2, out):
ref = np.bitwise_or(inp1, inp2)
if np.array_equal(ref, out) == False:
raise ValueError(f"Mismatch w.r.t ref for device")
if __name__ == "__main__":
dev_opdev = {'mixed': ['hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
inp1, inp2, out = run(dev, op_dev)
compare_ref(inp1, inp2, out)
The following is the output of BitwiseOr operator:
inp1 tensor shape: (2, 3, 2, 3)
inp1 tensor dtype: uint8
inp1 tensor data:
[[[[149 187 232]
[160 201 202]]
[[ 80 147 153]
[199 174 158]]
[[200 124 139]
[ 3 161 216]]]
[[[106 93 83]
[ 57 253 52]]
[[222 189 26]
[174 60 118]]
[[218 84 43]
[251 75 73]]]]
inp2 tensor shape: (2, 3, 2, 3)
inp2 tensor dtype: uint8
inp2 tensor data:
[[[[ 73 245 55]
[ 65 148 105]]
[[226 132 241]
[ 39 76 102]]
[[170 6 130]
[179 101 220]]]
[[[205 68 134]
[ 76 48 79]]
[[118 81 33]
[ 29 214 85]]
[[ 50 146 23]
[107 146 51]]]]
out tensor shape: (2, 3, 2, 3)
out tensor dtype: uint8
out tensor data:
[[[[221 255 255]
[225 221 235]]
[[242 151 249]
[231 238 254]]
[[234 126 139]
[179 229 220]]]
[[[239 93 215]
[125 253 127]]
[[254 253 59]
[191 254 119]]
[[250 214 63]
[251 219 123]]]]