habana_frameworks.mediapipe.fn.Clamp

Class:
  • habana_frameworks.mediapipe.fn.Clamp(**kwargs)

Define graph call:
  • __call__(input, lower_bound, upper_bound)

Parameter:
  • input - Input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: FLOAT16, FLOAT32, BFLOAT16.

  • (optional) lower_bound - 1D tensor of size 1, with lowerbound value in it. Supported dimensions: minimum = 1, maximum = 1. Supported data types: FLOAT16, FLOAT32, BFLOAT16.

  • (optional) upper_bound - 1D tensor of size 1, with upperbound value in it. Supported dimensions: minimum = 1, maximum = 1. Supported data types: FLOAT16, FLOAT32, BFLOAT16.

Description:

Clamps all elements in input into the range [lowerBound, upperBound].

Supported backend:
  • HPU

Keyword Arguments

kwargs

Description

upperBound

The maximum upperbound value for the input. Higher values than upperBound are clipped to upperBound.

  • Type: float

  • Default: 0.0

  • Optional: yes

lowerBound

The minimum lowerbound value for the input. Lower values than lowerBound are clipped to lowerBound.

  • Type: float

  • Default: 0.0

  • Optional: yes

dtype

Output data type.

  • Type: habana_frameworks.mediapipe.media_types.dtype

  • Default: UINT8

  • Optional: yes

  • Supported data type:

    • FLOAT32

    • BFLOAT16

Note

  1. All input/output tensors must be of the same data type and must have the same dimensionality.

  2. This operator is agnostic to the data layout.

  3. lower_bound and upper_bound are optional tensors with lowerBound and upperBound values respectively.

  4. When lower_bound and upper_bound input tensors are not provided scalar params are used as lowerBound and upperBound.

  5. If the data type is BFLOAT16, then the params lowerBound and upperBound float value is converted inside the operator from float to BFLOAT16.

Example: Clamp Operator

The following code snippet shows usage of Clamp operator:

from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import os
import numpy as np

g_upper_bound = 120.0
g_lower_bound = 50.0

class myMediaPipe(MediaPipe):
    def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
        super(
            myMediaPipe,
            self).__init__(
            device,
            queue_depth,
            batch_size,
            num_threads,
            self.__class__.__name__)

        self.inp = fn.ReadNumpyDatasetFromDir(num_outputs=1,
                                              shuffle=False,
                                              dir=dir,
                                              pattern="inp_x_*.npy",
                                              dense=True,
                                              dtype=dt.FLOAT32,
                                              device="cpu")

        self.cast = fn.Clamp(upperBound=g_upper_bound,
                            lowerBound=g_lower_bound,
                            dtype=dt.FLOAT32,
                            device=op_device)

    def definegraph(self):
        inp = self.inp()
        out = self.cast(inp)
        return out, inp


def run(device, op_device):
    batch_size = 2
    queue_depth = 2
    num_threads = 1
    base_dir = os.environ['DATASET_DIR']
    dir = base_dir+"/npy_data/fp32/"

    # Create MediaPipe object
    pipe = myMediaPipe(device, queue_depth, batch_size,
                      num_threads, op_device, dir)

    # Build MediaPipe
    pipe.build()

    # Initialize MediaPipe iterator
    pipe.iter_init()

    # Run MediaPipe
    out, inp = pipe.run()

    def as_cpu(tensor):
        if (callable(getattr(tensor, "as_cpu", None))):
            tensor = tensor.as_cpu()
        return tensor

    out = as_cpu(out).as_nparray()
    inp = as_cpu(inp).as_nparray()

    del pipe

    print("\nout tensor shape:", out.shape)
    print("out tensor dtype:", out.dtype)
    print("out tensor data:\n", out)


def compare_ref(inp, out):
    ref = np.clip(inp, g_lower_bound,g_upper_bound)
    if np.array_equal(ref, out) == False:
        raise ValueError(f"Mismatch w.r.t ref")

if __name__ == "__main__":
    dev_opdev = {'mixed': ['hpu'],
                'legacy': ['hpu']}

    for dev in dev_opdev.keys():
        for op_dev in dev_opdev[dev]:
            run(dev, op_dev)

The following is the output of Clamp operator:

out tensor shape: (2, 3, 2, 3)
out tensor dtype: float32
out tensor data:
[[[[120. 120. 113.]
  [120. 120. 120.]]

  [[ 58. 120. 120.]
  [ 86.  80. 111.]]

  [[120. 120. 120.]
  [ 50. 120. 108.]]]


[[[120. 120.  96.]
  [120.  64. 120.]]

  [[120.  50. 117.]
  [120.  50. 111.]]

  [[ 77.  50. 120.]
  [120. 102. 120.]]]]