habana_frameworks.mediapipe.fn.MediaConst
habana_frameworks.mediapipe.fn.MediaConst¶
- Class:
habana_frameworks.mediapipe.fn.MediaConst(**kwargs)
- Define graph call:
__call__()
- Parameter:
None
Description:
This operator generates constant data as per given shape and data type on every iteration.
- Supported backend:
CPU
Keyword Arguments
kwargs |
Description |
---|---|
data |
Data to be used as constant.
|
batch_broadcast |
If True, media will broadcast data on batch dimension, else provided data must have batch dimension.
|
layout |
Layout of data.
|
shape |
Shape of the output tensor.
|
Note
Produces one output.
Example: MediaConst Operator
The following code snippet shows usage of MediaConst operator. In this example the indices which are input to GatherND
operation are generated
using MediaConst operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
import matplotlib.pyplot as plt
import numpy as np
import os
g_display_timeout = os.getenv("DISPLAY_TIMEOUT") or 5
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir, img_h, img_w):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.input = fn.ReadImageDatasetFromDir(shuffle=False,
dir=dir,
format="jpg",
device="cpu")
# WHCN
self.decode = fn.ImageDecoder(device="hpu",
output_format=it.RGB_P,
resize=[img_w, img_h])
indices_data = np.array([[5], [4], [3], [2], [1], [0]], dtype='int32')
self.indices = fn.MediaConst(data=indices_data,
shape=[1, batch_size],
dtype=dt.INT32,
batch_broadcast=False,
device=op_device)
self.gather_nd = fn.GatherND(dtype=dt.UINT8, device="hpu")
# WHCN -> CWHN
self.transpose = fn.Transpose(permutation=[2, 0, 1, 3],
tensorDim=4,
dtype=dt.UINT8,
device="hpu")
self.reshape_lbls = fn.Reshape(size=[batch_size],
tensorDim=1,
layout='',
dtype=dt.INT32,
device='hpu')
def definegraph(self):
images, labels = self.input()
images = self.decode(images)
indices = self.indices()
images = self.gather_nd(images, indices)
images = self.transpose(images)
labels.as_hpu()
return images, labels
def display_images(images, batch_size, cols):
rows = (batch_size + 1) // cols
plt.figure(figsize=(10, 10))
for i in range(batch_size):
ax = plt.subplot(rows, cols, i + 1)
plt.imshow(images[i])
plt.axis("off")
plt.show(block=False)
plt.pause(g_display_timeout)
plt.close()
def run(device, op_device):
batch_size = 6
queue_depth = 2
num_threads = 1
img_width = 200
img_height = 200
base_dir = os.environ['DATASET_DIR']
dir = base_dir + "/img_data/"
columns = 3
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir,
img_height, img_width)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
images, labels = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
images = as_cpu(images).as_nparray()
labels = as_cpu(labels).as_nparray()
del pipe
# Display images
display_images(images, batch_size, columns)
if __name__ == "__main__":
dev_opdev = {'mixed': ['cpu'],
'legacy': ['cpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
run(dev, op_dev)
MediaConst() Generated Images from GatherND 1
- 1
Licensed under a CC BY SA 4.0 license. The images used here are taken from https://data.caltech.edu/records/mzrjq-6wc02.