habana_frameworks.mediapipe.fn.MediaConst
habana_frameworks.mediapipe.fn.MediaConst¶
- Class:
 habana_frameworks.mediapipe.fn.MediaConst(**kwargs)
- Define graph call:
 __call__()
- Parameter:
 None
Description:
This operator generates constant data as per given shape and data type on every iteration.
- Supported backend:
 CPU
Keyword Arguments
kwargs  | 
Description  | 
|---|---|
data  | 
Data to be used as constant. 
  | 
batch_broadcast  | 
If True, media will broadcast data on batch dimension, else provided data must have batch dimension. 
  | 
layout  | 
Layout of data. 
  | 
shape  | 
Shape of the output tensor. 
  | 
Note
Produces one output.
Example: MediaConst Operator
The following code snippet shows usage of MediaConst operator. In this example the indices which are input to GatherND operation are generated
using MediaConst operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
import matplotlib.pyplot as plt
import numpy as np
import os
g_display_timeout = os.getenv("DISPLAY_TIMEOUT") or 5
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
    def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir, img_h, img_w):
        super(
            myMediaPipe,
            self).__init__(
            device,
            queue_depth,
            batch_size,
            num_threads,
            self.__class__.__name__)
        self.input = fn.ReadImageDatasetFromDir(shuffle=False,
                                                dir=dir,
                                                format="jpg",
                                                device="cpu")
        # WHCN
        self.decode = fn.ImageDecoder(device="hpu",
                                      output_format=it.RGB_P,
                                      resize=[img_w, img_h])
        indices_data = np.array([[5], [4], [3], [2], [1], [0]], dtype='int32')
        self.indices = fn.MediaConst(data=indices_data,
                                    shape=[1, batch_size],
                                    dtype=dt.INT32,
                                    batch_broadcast=False,
                                    device=op_device)
        self.gather_nd = fn.GatherND(dtype=dt.UINT8, device="hpu")
        # WHCN -> CWHN
        self.transpose = fn.Transpose(permutation=[2, 0, 1, 3],
                                      tensorDim=4,
                                      dtype=dt.UINT8,
                                      device="hpu")
        self.reshape_lbls = fn.Reshape(size=[batch_size],
                                      tensorDim=1,
                                      layout='',
                                      dtype=dt.INT32,
                                      device='hpu')
    def definegraph(self):
        images, labels = self.input()
        images = self.decode(images)
        indices = self.indices()
        images = self.gather_nd(images, indices)
        images = self.transpose(images)
        labels.as_hpu()
        return images, labels
def display_images(images, batch_size, cols):
    rows = (batch_size + 1) // cols
    plt.figure(figsize=(10, 10))
    for i in range(batch_size):
        ax = plt.subplot(rows, cols, i + 1)
        plt.imshow(images[i])
        plt.axis("off")
    plt.show(block=False)
    plt.pause(g_display_timeout)
    plt.close()
def run(device, op_device):
    batch_size = 6
    queue_depth = 2
    num_threads = 1
    img_width = 200
    img_height = 200
    base_dir = os.environ['DATASET_DIR']
    dir = base_dir + "/img_data/"
    columns = 3
    # Create MediaPipe object
    pipe = myMediaPipe(device, queue_depth, batch_size,
                      num_threads, op_device, dir,
                      img_height, img_width)
    # Build MediaPipe
    pipe.build()
    # Initialize MediaPipe iterator
    pipe.iter_init()
    # Run MediaPipe
    images, labels = pipe.run()
    def as_cpu(tensor):
        if (callable(getattr(tensor, "as_cpu", None))):
            tensor = tensor.as_cpu()
        return tensor
    # Copy data to host from device as numpy array
    images = as_cpu(images).as_nparray()
    labels = as_cpu(labels).as_nparray()
    del pipe
    # Display images
    display_images(images, batch_size, columns)
if __name__ == "__main__":
    dev_opdev = {'mixed': ['cpu'],
                'legacy': ['cpu']}
    for dev in dev_opdev.keys():
        for op_dev in dev_opdev[dev]:
            run(dev, op_dev)
MediaConst() Generated Images from GatherND 1
- 1
 Licensed under a CC BY SA 4.0 license. The images used here are taken from https://data.caltech.edu/records/mzrjq-6wc02.
      
      
      




