habana_frameworks.mediapipe.fn.RandomUniform
habana_frameworks.mediapipe.fn.RandomUniform¶
- Class:
habana_frameworks.mediapipe.fn.RandomUniform(**kwargs)
- Define graph call:
__call__(seed)
- Parameter:
(optional) seed - 1D tensor of size 1. Supported dimensions: minimum = 1, maximum = 1. Supported data types: INT32.
Description:
Generate random numbers from a uniform distribution.
- Supported backend:
HPU, CPU
Keyword Arguments
kwargs |
Description |
---|---|
low |
Lower bound.
|
high |
Upper bound.
|
seed |
Seed to the random number generator.
|
dtype |
Output data type.
|
Note
If seed tensor is provided, then no need to initialize
seed
value in operator arguments.Output tensor supported with minimum rank = 1 and maximum rank = 1.
Example: RandomUniform Operator
The following code snippet shows usage of RandomUniform operator. Random data is generated as noise by RandomUniform operator and added to the image:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import os
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
super(myMediaPipe, self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.inp = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_x_*.npy",
dense=True,
dtype=dt.FLOAT32,
device="cpu")
self.random_uniform = fn.RandomUniform(seed=123456,
low=0.1,
high=0.3,
dtype=dt.FLOAT32,
device=op_device)
self.mul = fn.Mult(dtype=dt.FLOAT32,
device=op_device)
def definegraph(self):
inp = self.inp()
noise = self.random_uniform()
out = self.mul(inp, noise)
return inp, noise, out
def run(device, op_device):
batch_size = 4
queue_depth = 2
num_threads = 1
base_dir = os.environ['DATASET_DIR']
dir = base_dir+"/npy_data/fp32/"
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
inp, noise, out = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
inp = as_cpu(inp).as_nparray()
noise = as_cpu(noise).as_nparray()
out = as_cpu(out).as_nparray()
print("\ninp tensor shape:", inp.shape)
print("inp tensor dtype:", inp.dtype)
print("inp tensor data:\n", inp)
print("\nnoise tensor shape:", noise.shape)
print("noise tensor dtype:", noise.dtype)
print("noise tensor data:\n", noise)
print("\nout tensor shape:", out.shape)
print("out tensor dtype:", out.dtype)
print("out tensor data:\n", out)
pipe.del_iter()
if __name__ == "__main__":
dev_opdev = {'cpu': ['cpu'],
'mixed': ['hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
run(dev, op_dev)
The following is the output of RandomUniform operator:
inp tensor shape: (4, 3, 2, 3)
inp tensor dtype: float32
inp tensor data:
[[[[182. 227. 113.]
[175. 128. 253.]]
[[ 58. 140. 136.]
[ 86. 80. 111.]]
[[175. 196. 178.]
[ 20. 163. 108.]]]
[[[186. 254. 96.]
[180. 64. 132.]]
[[149. 50. 117.]
[213. 6. 111.]]
[[ 77. 11. 160.]
[129. 102. 154.]]]
[[[100. 95. 164.]
[134. 131. 112.]]
[[ 77. 38. 127.]
[123. 87. 71.]]
[[227. 186. 223.]
[ 35. 56. 166.]]]
[[[ 62. 144. 89.]
[142. 15. 199.]]
[[103. 166. 14.]
[ 91. 89. 24.]]
[[ 89. 135. 15.]
[ 99. 103. 43.]]]]
noise tensor shape: (4, 1)
noise tensor dtype: float32
noise tensor data:
[[0.12539397]
[0.18694901]
[0.13565043]
[0.13125855]]
out tensor shape: (4, 3, 2, 3)
out tensor dtype: float32
out tensor data:
[[[[22.821703 28.464432 14.169518 ]
[21.943945 16.050428 31.724674 ]]
[[ 7.2728505 17.555157 17.05358 ]
[10.783881 10.031518 13.918731 ]]
[[21.943945 24.577219 22.320127 ]
[ 2.5078795 20.439217 13.542549 ]]]
[[[34.77252 47.48505 17.947105 ]
[33.65082 11.964737 24.677269 ]]
[[27.855404 9.34745 21.873035 ]
[39.82014 1.1216941 20.75134 ]]
[[14.395074 2.0564392 29.911842 ]
[24.116423 19.0688 28.790148 ]]]
[[[13.5650425 12.88679 22.24667 ]
[18.177156 17.770206 15.192848 ]]
[[10.445083 5.154716 17.227604 ]
[16.685003 11.801587 9.63118 ]]
[[30.792646 25.23098 30.250046 ]
[ 4.747765 7.596424 22.517971 ]]]
[[[ 8.13803 18.90123 11.682011 ]
[18.638714 1.9688783 26.120451 ]]
[[13.51963 21.78892 1.8376197]
[11.944528 11.682011 3.1502051]]
[[11.682011 17.719904 1.9688783]
[12.9945965 13.51963 5.6441174]]]]