Advanced Model Training Example: Run ResNet Multi-node Cluster
On this Page
Advanced Model Training Example: Run ResNet Multi-node Cluster¶
The below are instructions for setting up a ResNet dataset and performing distributed training. ResNet Model, from Model References, requires dependencies to be installed.
Build and Store Custom Docker Image¶
Create a Dockerfile with the below content:
FROM vault.habana.ai/gaudi-docker/1.17.1/ubuntu22.04/habanalabs/pytorch-installer-2.3.1:latest # Clones Model References and installs ResNet dependencies RUN git clone -b 1.17.1 https://github.com/HabanaAI/Model-References.git /Model-References && \ python3 -m pip install -r /Model-References/PyTorch/computer_vision/classification/torchvision/requirements.txt
Build and push the image to AWS’s Elastic Container Registry (ECR) for ease of access on EC2 instances. For further information on how to build and push an image to ECR, refer to Amazon ECR Getting Started Guide.
Upload Data to Elastic File System (EFS)¶
Follow the instructions for ResNet Data Generation and upload that to Amazon EFS. For more details on how to use EFS, refer to Amazon EFS Getting Started Guide. This will allow the cluster ease of access to the training dataset.
Enable EFS CSI Driver on EKS¶
To set up EFS on EKS, refer to EKS EFS CSI Driver Installation Guide.
Launch EFS on EKS¶
Create
storage.yaml
file. This file creates a file system that can be accessed from multiple pods at once. For more information on how Persistent Volume functions, refer to Kubernetes Persistent Volume Guide.--- kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: efs-sc provisioner: efs.csi.aws.com --- apiVersion: v1 kind: PersistentVolume metadata: name: efs-pv spec: capacity: storage: 150Gi volumeMode: Filesystem accessModes: - ReadWriteMany persistentVolumeReclaimPolicy: Retain storageClassName: efs-sc csi: driver: efs.csi.aws.com volumeHandle: fs-05af1ea276164472d --- apiVersion: v1 kind: PersistentVolumeClaim metadata: name: efs-claim spec: accessModes: - ReadWriteMany storageClassName: efs-sc resources: requests: storage: 150Gi ---
Update the Elastic File System ID using the
volumeHandle
parameter to run the desired configuration.Create the Persistent Volume:
kubectl apply -f storage.yaml
Launch ResNet Training¶
Create
resnet.yaml
file with the content below. Check the model code README for details on how to run ResNet Multi-Server Training:apiVersion: kubeflow.org/v2beta1 kind: MPIJob metadata: name: resnet50-2wkr spec: slotsPerWorker: 8 runPolicy: cleanPodPolicy: Running mpiReplicaSpecs: Launcher: replicas: 1 template: spec: imagePullSecrets: - name: private-registry terminationGracePeriodSeconds: 0 containers: - image: <Custom Docker Image> imagePullPolicy: Always name: resnet-launcher command: ["/bin/bash", "-c"] args: - >- HOSTSFILE=$OMPI_MCA_orte_default_hostfile; MASTER_ADDR="$(head -n 1 $HOSTSFILE | sed -n s/[[:space:]]slots.*//p)"; NUM_NODES=$(wc -l < $HOSTSFILE); CARDS_PER_NODE=8; N_CARDS=$((NUM_NODES*CARDS_PER_NODE)); MODEL_PATH=/Model-References/PyTorch/computer_vision/classification/torchvision/; DATA_DIR=/data/pytorch/imagenet/ILSVRC2012; CMD="python $MODEL_PATH/train.py \ --data-path=${DATA_DIR} \ --model=resnet50 \ --device=hpu \ --batch-size=256 \ --epochs=90 \ --print-freq=1 \ --output-dir=. \ --seed=123 \ --autocast \ --custom-lr-values 0.275 0.45 0.625 0.8 0.08 0.008 0.0008 \ --custom-lr-milestones 1 2 3 4 30 60 80 \ --deterministic \ --dl-time-exclude=False"; mpirun -np ${N_CARDS} \ --allow-run-as-root \ --prefix $MPI_ROOT \ --map-by ppr:4:socket:PE=6 \ --bind-to core \ -x PYTHONPATH="/usr/lib/habanalabs:/Model-References" \ -x RDMAV_FORK_SAFE=1 \ -x FI_EFA_USE_DEVICE_RDMA=1 \ -x MASTER_ADDR=$MASTER_ADDR \ $CMD; resources: requests: cpu: "100m" volumeMounts: - mountPath: /data name: persistent-storage volumes: - name: persistent-storage persistentVolumeClaim: claimName: efs-claim Worker: replicas: 2 template: spec: imagePullSecrets: - name: private-registry hostIPC: true containers: - image: <Custom Docker Image> name: resnet-worker resources: requests: habana.ai/gaudi: 8 hugepages-2Mi: 42000Mi cpu: 90 vpc.amazonaws.com/efa: 4 limits: habana.ai/gaudi: 8 hugepages-2Mi: 42000Mi cpu: 90 vpc.amazonaws.com/efa: 4 volumeMounts: - mountPath: /data name: persistent-storage volumes: - name: persistent-storage persistentVolumeClaim: claimName: efs-claim
Update the parameters listed below to run the desired configuration:
Parameter
Description
<Custom Docker Image>
Image with ResNet dependencies installed
replicas: 2
Number of DL1s for training.
Run the job:
kubectl apply -f resnet.yaml
Check the job status:
kubectl get pods -A
Retrieve the name of the created pod and run the following command to see the results:
kubectl logs <pod-name>