habana_frameworks.mediapipe.fn.Crop
habana_frameworks.mediapipe.fn.Crop¶
- Class:
habana_frameworks.mediapipe.fn.Crop(**kwargs)
- Define graph call:
__call__(input)
- Parameter:
input - Input tensor to operator. Supported dimensions: minimum = 4, maximum = 5. Supported data types: UINT8, UINT16.
Description:
This operator crops input tensor with specified window dimensions and window position. Crop kernel can crop input along W/H/C dimensions. It can also cast output to FLOAT32 or FLOAT16 data type.
- Supported backend:
HPU, CPU
Keyword Arguments
kwargs |
Description |
---|---|
crop_w |
Specify width of crop window in pixels. crop_w should be non zero value and less than or equal to input tensor width.
|
crop_h |
Specify height of crop window in pixels. crop_h should be non zero value and less than or equal to input tensor height.
|
crop_d |
Cropping along depth axis is optional. crop_d should be set to 0 if there are no cropping along depth axis. crop_d specify depth of crop window in pixels, its default set to zero, only for volumetric data crop_d should be non zero value and less than or equal to input tensor depth.
|
crop_pos_x |
Normalized (0.0 - 1.0) position of the cropping window along width. Actual position is calculated as crop_x = crop_pos_x * (w - crop_w), where crop_pos_x is the normalized position, w is the width of the input tensor and crop_w is the width of the cropping window.
|
crop_pos_y |
Normalized (0.0 - 1.0) position of the cropping window along height. Actual position is calculated as crop_y = crop_pos_y * (h - crop_h), where crop_pos_y is the normalized position, h is the height of the input tensor and crop_h is the height of the cropping window.
|
crop_pos_z |
Only for volumetric data, normalized (0.0 - 1.0) position of the cropping window along depth. Actual position is calculated as crop_z = crop_pos_z * (d - crop_d), where crop_pos_z is the normalized position, d is the depth of the input tensor and crop_d is the depth of the cropping window.
|
dtype |
Output data type.
|
Example: Crop Operator
The following code snippet shows usage of Crop operator. The first decoder produces images of width=200, height=200. These are fed to crop operator with crop_w=150, crop_h=150.
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import os
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
super(myMediaPipe, self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.inp = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_x_*.npy",
dense=True,
dtype=dt.UINT8,
device="cpu")
self.crop = fn.Crop(crop_h=2,
crop_w=2,
dtype=dt.UINT8,
device=op_device)
def definegraph(self):
inp = self.inp()
out = self.crop(inp)
return out, inp
def run(device, op_device):
batch_size = 2
queue_depth = 2
num_threads = 1
base_dir = os.environ['DATASET_DIR']
dir = base_dir+"/npy_data/u8/"
device = device
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
out, inp = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
inp = as_cpu(inp).as_nparray()
out = as_cpu(out).as_nparray()
del pipe
print("\ninp tensor shape:", inp.shape)
print("inp tensor dtype:", inp.dtype)
print("inp tensor data:\n", inp)
print("\nout tensor shape:", out.shape)
print("out tensor dtype:", out.dtype)
print("out tensor data:\n", out)
return inp, out
if __name__ == "__main__":
dev_opdev = {'cpu': ['cpu'],
'mixed': ['hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
inp, out = run(dev, op_dev)
The following is the output of Crop operator:
inp tensor shape: (2, 3, 2, 3)
inp tensor dtype: uint8
inp tensor data:
[[[[149 187 232]
[160 201 202]]
[[ 80 147 153]
[199 174 158]]
[[200 124 139]
[ 3 161 216]]]
[[[106 93 83]
[ 57 253 52]]
[[222 189 26]
[174 60 118]]
[[218 84 43]
[251 75 73]]]]
out tensor shape: (2, 3, 2, 2)
out tensor dtype: uint8
out tensor data:
[[[[149 187]
[160 201]]
[[ 80 147]
[199 174]]
[[200 124]
[ 3 161]]]
[[[106 93]
[ 57 253]]
[[222 189]
[174 60]]
[[218 84]
[251 75]]]]