habana_frameworks.mediapipe.fn.Cast

Class:
  • habana_frameworks.mediapipe.fn.Cast(**kwargs)

Define graph call:
  • __call__(input)

Parameter:
  • input - Input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: UINT8, UINT16, UINT32, INT8, INT16, INT32, FLOAT16, BFLOAT16, FLOAT32.

Description:

This operator changes the data type of the input tensor.

Supported backend:
  • HPU

Keyword Arguments

kwargs

Description

round_mode

Rounding mode selection.

  • Type: CastF32RoundMode_t

  • Default: 0

  • Optional: yes

dtype

Output data type.

  • Type: habana_frameworks.mediapipe.media_types.dtype

  • Default: UINT8

  • Optional: yes

  • Supported data types:

    • INT8

    • UINT8

    • INT32

    • UINT32

    • BFLOAT16

    • FLOAT32

Note

  1. Input and output tensors must have the different data type. Self cast is not allowed.

  2. Cast between all supported data types is allowed.

Example: Cast Operator

The following code snippet shows usage of Cast operator, decoder output is casted to FLOAT32. Print of output image array shows float numbers.

from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import os
import numpy as np


class myMediaPipe(MediaPipe):
    def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
        super(
            myMediaPipe,
            self).__init__(
            device,
            queue_depth,
            batch_size,
            num_threads,
            self.__class__.__name__)

        self.inp = fn.ReadNumpyDatasetFromDir(num_outputs=1,
                                              shuffle=False,
                                              dir=dir,
                                              pattern="inp_x_*.npy",
                                              dense=True,
                                              dtype=dt.UINT8,
                                              device="cpu")

        self.cast = fn.Cast(dtype=dt.FLOAT32,
                            device=op_device)

    def definegraph(self):
        inp = self.inp()
        out = self.cast(inp)
        return out, inp


def run(device, op_device):
    batch_size = 2
    queue_depth = 2
    num_threads = 1
    base_dir = os.environ['DATASET_DIR']
    dir = base_dir+"/npy_data/u8/"

    # Create MediaPipe object
    pipe = myMediaPipe(device, queue_depth, batch_size,
                      num_threads, op_device, dir)

    # Build MediaPipe
    pipe.build()

    # Initialize MediaPipe iterator
    pipe.iter_init()

    # Run MediaPipe
    out, inp = pipe.run()

    def as_cpu(tensor):
        if (callable(getattr(tensor, "as_cpu", None))):
            tensor = tensor.as_cpu()
        return tensor

    out = as_cpu(out).as_nparray()
    inp = as_cpu(inp).as_nparray()

    del pipe

    print("\nout tensor shape:", out.shape)
    print("out tensor dtype:", out.dtype)
    print("out tensor data:\n", out)
    return inp, out


def compare_ref(inp, out):
    ref = np.array(inp, dtype=np.float32)
    if np.array_equal(ref, out) == False:
        raise ValueError(f"Mismatch w.r.t ref")

if __name__ == "__main__":
    dev_opdev = {'mixed': ['hpu'],
                'legacy': ['hpu']}
    for dev in dev_opdev.keys():
        for op_dev in dev_opdev[dev]:
            inp, out = run(dev, op_dev)
            compare_ref(inp, out)

The following is the output of Cast operator:

out tensor shape: (2, 3, 2, 3)
out tensor dtype: float32
out tensor data:
[[[[149. 187. 232.]
  [160. 201. 202.]]

  [[ 80. 147. 153.]
  [199. 174. 158.]]

  [[200. 124. 139.]
  [  3. 161. 216.]]]


[[[106.  93.  83.]
  [ 57. 253.  52.]]

  [[222. 189.  26.]
  [174.  60. 118.]]

  [[218.  84.  43.]
  [251.  75.  73.]]]]