habana_frameworks.mediapipe.fn.Pad
habana_frameworks.mediapipe.fn.Pad¶
- Class:
- habana_frameworks.mediapipe.fn.Pad(**kwargs) 
 
- Define graph call:
- __call__(input) 
 
- Parameter:
- input - Input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, UINT8, BFLOAT16, FLOAT32. 
 
Description:
Pads a tensor with zeros or any numbers. Output tensor size is calculated using the following formula:
For 4D tensors:
out_sizes[0] = input_sizes[0] + pads[0] + pads[4]
out_sizes[1] = input_sizes[1] + pads[1] + pads[5]
out_sizes[2] = input_sizes[2] + pads[2] + pads[6]
out_sizes[3] = input_sizes[3] + pads[3] + pads[7]
For 5D tensors:
out_sizes[0] = input_sizes[0] + pads[0] + pads[5]
out_sizes[1] = input_sizes[1] + pads[1] + pads[6]
out_sizes[2] = input_sizes[2] + pads[2] + pads[7]
out_sizes[3] = input_sizes[3] + pads[3] + pads[8]
out_sizes[4] = input_sizes[4] + pads[4] + pads[9]
- Supported backend:
- HPU 
 
Keyword Arguments
| kwargs | Description | 
|---|---|
| mode | Specifies padding mode. 
 | 
| value | A constant to pad the input. 
 | 
| pads[10] | The paddings indicate how many constant values to add before and after the input in all the dimensions given as pad_before[0]…pad_before[4], pad_after[0] … pad_after[4]. 
 | 
| dtype | Output data type. 
 | 
Note
- Input/Output tensors datatype should match operation data type. 
- In PAD_MODE_SYMMETRIC, pad along a dim should not be greater than corresponding dim size. 
- In PAD_MODE_REFLECT, pad along a dim should not be greater or equal to corresponding dim size. 
- Negative pads are only supported in Constant mode. 
- “PAD_MODE_EDGE” mode is ONNX compliant. 
Example: Pad Operator
The following code snippet shows usage of Pad operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
import matplotlib.pyplot as plt
import os
g_display_timeout = os.getenv("DISPLAY_TIMEOUT") or 5
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
    def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir, img_h, img_w):
        super(
            myMediaPipe,
            self).__init__(
            device,
            queue_depth,
            batch_size,
            num_threads,
            self.__class__.__name__)
        self.input = fn.ReadImageDatasetFromDir(shuffle=False,
                                                dir=dir,
                                                format="jpg",
                                                device="cpu")
        # WHCN
        self.decode = fn.ImageDecoder(device="hpu",
                                      output_format=it.RGB_P,
                                      resize=[img_w, img_h])
        self.pad = fn.Pad(pads=[60, 30, 0, 0, 60, 30, 0, 0],
                          mode=0,
                          value=0.0,
                          dtype=dt.UINT8,
                          device=op_device)
        # WHCN -> CWHN
        self.transpose = fn.Transpose(permutation=[2, 0, 1, 3],
                                      tensorDim=4,
                                      dtype=dt.UINT8,
                                      device=op_device)
    def definegraph(self):
        images, labels = self.input()
        images = self.decode(images)
        images = self.pad(images)
        images = self.transpose(images)
        return images, labels
def display_images(images, batch_size, cols):
    rows = (batch_size + 1) // cols
    plt.figure(figsize=(10, 10))
    for i in range(batch_size):
        ax = plt.subplot(rows, cols, i + 1)
        plt.imshow(images[i])
        plt.axis("off")
    plt.show(block=False)
    plt.pause(g_display_timeout)
    plt.close()
def run(device, op_device):
    batch_size = 6
    queue_depth = 2
    num_threads = 1
    img_width = 200
    img_height = 200
    base_dir = os.environ['DATASET_DIR']
    dir = base_dir + "/img_data/"
    columns = 3
    # Create MediaPipe object
    pipe = myMediaPipe(device, queue_depth, batch_size,
                      num_threads, op_device, dir,
                      img_height, img_width)
    # Build MediaPipe
    pipe.build()
    # Initialize MediaPipe iterator
    pipe.iter_init()
    # Run MediaPipe
    images, labels = pipe.run()
    def as_cpu(tensor):
        if (callable(getattr(tensor, "as_cpu", None))):
            tensor = tensor.as_cpu()
        return tensor
    # Copy data to host from device as numpy array
    images = as_cpu(images).as_nparray()
    del pipe
    # Display shape
    display_images(images, batch_size, columns)
if __name__ == "__main__":
    dev_opdev = {'mixed': ['hpu'],
                'legacy': ['hpu']}
    for dev in dev_opdev.keys():
        for op_dev in dev_opdev[dev]:
            run(dev, op_dev)
Images with Padding by Constant Value 1
- 1
- Licensed under a CC BY SA 4.0 license. The images used here are taken from https://data.caltech.edu/records/mzrjq-6wc02. 
 
      
      
      




