habana_frameworks.mediapipe.fn.Concat
habana_frameworks.mediapipe.fn.Concat¶
- Class:
habana_frameworks.mediapipe.fn.Concat(**kwargs)
- Define graph call:
__call__(input1, input2)
- Parameter:
input1 - First input tensor to operator. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, UINT8, BFLOAT16, FLOAT32.
input2 - Second input tensor to operator with the same dimensionality as input1 tensor. Supported dimensions: minimum = 1, maximum = 5. Supported data types: INT8, UINT8, BFLOAT16, FLOAT32.
Description:
Concatenates tensors along given axis. A maximum 10 tensors can be given as input.
- Supported backend:
HPU
Keyword Arguments
kwargs |
Description |
---|---|
axis |
Axis along which tensors to be concatenated.
|
dtype |
Output data type.
|
Note
All input and output tensors are expected to have the same number of dimensions and the same shape except on the given concatenation dimension.
Currently supports 10 inputs maximum .
Example: Concat Operator
The following code snippet shows usage of Concat operator:
from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import dtype as dt
import numpy as np
import os
# Create MediaPipe derived class
class myMediaPipe(MediaPipe):
def __init__(self, device, queue_depth, batch_size, num_threads, op_device, dir):
super(
myMediaPipe,
self).__init__(
device,
queue_depth,
batch_size,
num_threads,
self.__class__.__name__)
self.input0 = fn.ReadNumpyDatasetFromDir(num_outputs=1,
shuffle=False,
dir=dir,
pattern="inp_x_*.npy",
dense=True,
dtype=dt.FLOAT32,
device="cpu")
self.concat = fn.Concat(axis=2, dtype=dt.FLOAT32, device=op_device)
def definegraph(self):
inp0 = self.input0()
inp1 = self.input0()
out = self.concat(inp0, inp1)
return out, inp0
def run(device, op_device):
batch_size = 1
queue_depth = 2
num_threads = 1
base_dir = os.environ['DATASET_DIR']
dir = base_dir+"/npy_data/fp32/"
# Create MediaPipe object
pipe = myMediaPipe(device, queue_depth, batch_size,
num_threads, op_device, dir)
# Build MediaPipe
pipe.build()
# Initialize MediaPipe iterator
pipe.iter_init()
# Run MediaPipe
out, inp = pipe.run()
def as_cpu(tensor):
if (callable(getattr(tensor, "as_cpu", None))):
tensor = tensor.as_cpu()
return tensor
# Copy data to host from device as numpy array
out = as_cpu(out).as_nparray()
inp = as_cpu(inp).as_nparray()
del pipe
print("\ninp tensor shape:", inp.shape)
print("inp tensor dtype:", inp.dtype)
print("inp tensor data:\n", inp)
print("\nout tensor shape:", out.shape)
print("out tensor dtype:", out.dtype)
print("out tensor data:\n", out)
return inp, out
def compare_ref(inp, out):
ref = np.concatenate((inp, inp), axis = 1)
if np.array_equal(ref, out) == False:
raise ValueError(f"Mismatch w.r.t ref")
if __name__ == "__main__":
dev_opdev = {'mixed': ['hpu'],
'legacy': ['hpu']}
for dev in dev_opdev.keys():
for op_dev in dev_opdev[dev]:
inp, out = run(dev, op_dev)
compare_ref(inp, out)
The following is the output of Concat operator:
inp tensor shape: (1, 3, 2, 3)
inp tensor dtype: float32
inp tensor data:
[[[[182. 227. 113.]
[175. 128. 253.]]
[[ 58. 140. 136.]
[ 86. 80. 111.]]
[[175. 196. 178.]
[ 20. 163. 108.]]]]
out tensor shape: (1, 6, 2, 3)
out tensor dtype: float32
out tensor data:
[[[[182. 227. 113.]
[175. 128. 253.]]
[[ 58. 140. 136.]
[ 86. 80. 111.]]
[[175. 196. 178.]
[ 20. 163. 108.]]
[[182. 227. 113.]
[175. 128. 253.]]
[[ 58. 140. 136.]
[ 86. 80. 111.]]
[[175. 196. 178.]
[ 20. 163. 108.]]]]