Habana Deep Learning Base AMI Installation

The following table outlines the supported installation options and the steps required. Habana’s Base AMI is delivered pre-installed with the necessary installation to run containers.

Objective

Steps

Run Using Containers on Habana Base AMI (Recommended)

  1. Pull Prebuilt Containers or Build Docker Images from Habana Dockerfiles

  2. Run models using Habana Model-References

Run Framework on Habana Base AMI (TensorFlow/PyTorch)

  1. Install framework

  2. Set up Python for Models

  3. Run models using Habana Model-References

Habana Deep Learning AMI also includes AMIs on Amazon ECS and Amazon EKS. See Amazon ECS with Habana User Guide and Amazon EKS with Habana User Guide for more details.

Run Using Containers

Pull Prebuilt Containers

Prebuilt containers are provided in:

  • Habana Vault

  • Amazon ECR Public Library

  • AWS Deep Learning Containers (DLC)

Pull and Launch Docker Image - Habana Vault

Note

Before running docker, make sure to map the dataset as detailed in Map Dataset to Docker.

To pull and run the Habana Docker images use the below code examples. Update the parameters listed in the following table to run the desired configuration.

Parameter

Description

Values

$OS

Operating System of Image

[ubuntu18.04, ubuntu20.04, amzn2, rhel8.6]

$TF_VERSION

Desired TensorFlow Version

[2.10.1, 2.8.4]

$PT_VERSION

PyTorch Version

[1.13.0]

    docker pull vault.habana.ai/gaudi-docker/1.7.1/{$OS}/habanalabs/tensorflow-installer-tf-cpu-${TF_VERSION}:latest
     docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host vault.habana.ai/gaudi-docker/1.7.1/{$OS}/habanalabs/tensorflow-installer-tf-cpu-${TF_VERSION}:latest
     docker pull vault.habana.ai/gaudi-docker/1.7.1/{$OS}/habanalabs/pytorch-installer-1.13.0:latest
     docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.7.1/{$OS}/habanalabs/pytorch-installer-1.13.0:latest

AWS Deep Learning Containers

To set up and use AWS Deep Learning Containers, follow the instructions detailed in AWS Available Deep Learning Containers Images.

Build Docker Images from Habana Dockerfiles

  1. Download Docker files and build script from the Setup and Install Repo to a local directory.

  2. Run the build script to generate a Docker image:

./docker_build.sh mode [tensorflow,pytorch] os [ubuntu18.04,ubuntu20.04,amzn2,rhel8.6] tf_version [{Habana TF Version 1}, {Habana TF Version 2}]

For example:

./docker_build.sh tensorflow ubuntu20.04 2.8.4

Launch Docker Image that was Built

Note

Before running docker, make sure to map the dataset as detailed in Map Dataset to Docker.

Launch the docker image using the below code examples. Update the parameters listed in the following table to run the desired configuration.

Parameter

Description

Values

$OS

Operating System of Image

[ubuntu18.04, ubuntu20.04, amzn2, rhel8.6]

$TF_VERSION

Desired TensorFlow Version

[2.10.1, 2.8.4]

docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host vault.habana.ai/gaudi-docker/1.7.1/${OS}/habanalabs/tensorflow-installer-tf-cpu-${TF_VERSION}:latest
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.7.1/${OS}/habanalabs/pytorch-installer-1.13.0:latest

Map Dataset to Docker

Make sure to download the dataset prior to running docker and mount the location of your dataset to the docker by adding the below flag. For example, host dataset location /opt/datasets/imagenet will mount to /datasets/imagenet inside the docker:

-v /opt/datasets/imagenet:/datasets/imagenet

Note

OPTIONAL: Add the following flag to mount a local host share folder to the docker in order to be able to transfer files out of docker:

-v $HOME/shared:/root/shared

Install Native Frameworks

Installing frameworks with docker is the recommended installation method and does not require additional steps.

TensorFlow Installation

This section describes how to obtain and install the TensorFlow software package. Follow these instructions if you want to install the TensorFlow packages on a Bare Metal platform without a Docker image. The package consists of two main components to guarantee the same functionality delivered with TensorFlow Docker:

  • Base habana-tensorflow Python package - Libraries and modules needed to execute TensorFlow on a single Gaudi device.

  • Scale-out habana-horovod Python package - Libraries and modules needed to execute TensorFlow on a single-node machine.

To install Habana TensorFlow, run the following command.

wget -nv https://vault.habana.ai/artifactory/gaudi-installer/latest/habanalabs-installer.sh
chmod +x habanalabs-installer.sh
./habanalabs-installer.sh install --type tensorflow --venv

Note

  • Running the above command installs the latest version.

  • This script works only for currently supported Operating Systems specified in Support Matrix.

The -- venv flag installs the relevant framework inside the virtual environment. The default virtual environment folder is $HOME/habanalabs-venv. To override the default, run the following command:

export HABANALABS_VIRTUAL_DIR=xxxx

Model References Requirements

Habana provides a number of model references optimized to run on Gaudi. Those models are available at Model-References page.

Many of the references require additional Python packages (installed with pip tools), not provided by Habana. The packages required to run topologies from Model References repository are defined in per-topology requirements.txt files in each folder containing the topologies’ scripts.

PyTorch Installation

This section describes how to obtain and install the PyTorch software package. Follow the instructions outlined below to install PyTorch packages on a bare metal platform or virtual machine without a Docker image.

Habana PyTorch packages consist of:

  • torch - PyTorch framework package with Habana support

  • habana-torch-plugin - Libraries and modules needed to execute PyTorch on single card, single node and multi node setup.

  • habana-torch-dataloader - Habana multi-threaded dataloader package.

  • torchvision - Torchvision package compiled in torch environment. No Habana specific changes in this package.

To install Habana PyTorch environment, run the following command.

wget -nv https://vault.habana.ai/artifactory/gaudi-installer/latest/habanalabs-installer.sh
chmod +x habanalabs-installer.sh
./habanalabs-installer.sh install --type pytorch --venv

Note

  • Running the above command installs the latest version.

  • This script works only for currently supported Operating Systems specified in Support Matrix.

The -- venv flag installs the relevant framework inside the virtual environment. The default virtual environment folder is $HOME/habanalabs-venv. To override the default, run the following command:

export HABANALABS_VIRTUAL_DIR=xxxx

Model References Requirements

Some PyTorch models need additional python packages. They can be installed using python requirements files provided in Model References repository. Refer to Model References repository for detailed instructions on running PyTorch models.

Set up Python for Models

Using your own models requires setting python 3.8 as the default python version. If python 3.8 is not the default version, replace any call to the python command on your model with $PYTHON and define the environment variable as below:

export PYTHON=/usr/bin/python3.8

Running models from Habana Model-References, requires the PYTHON environment variable to match the supported python release:

export PYTHON=/usr/bin/python3.8

Note

Python 3.8 is the supported python release for all Operating Systems listed in the Support Matrix.